PRE-CALCULUS: by Finney,Demana, Watts and Kennedy

Chapter 3: Exponential, Logistic, and Logarithmic Functions

3.1 : Exponential and Logistic Functions

Exponential Function A function that can be rewritten in the form $y=a \cdot b^{x}$, where a is non-zero, b is positive, and $b \neq 1$. a: initial value at $\mathrm{x}=0$ b: base	Which of the following are exponential functions? For those that are exponential functions, state the initial value and the base. For those that are not, explain. A) $f(x)=3^{x}$ B) $g(x)=6 x^{-4}$
	$\begin{array}{ll}\text { C) } \mathrm{h}(\mathrm{x})=-2 \cdot 1.5^{x} & \text { D) } h(x)=7 \cdot-2^{x}\end{array}$
	E) $f(x)=5 \cdot 6^{\pi}$
	Compute the exact value of the function without using a calculator A) $2 \cdot 4^{x}$ when $\mathrm{x}=0$ B) $2 \cdot 4^{x}$ when $\mathrm{x}=-3$
	C) $-2 \cdot 4^{x}$ when $\mathrm{x}=1 / 2 \quad$ D) $3 \cdot 8^{x}$ when $\mathrm{x}=-2 / 3$

[^0]

2|Page

$3 \mid \mathrm{Page}$

Describe how to transform the graph of $\mathbf{f}(\mathbf{x})=\mathbf{2}^{\boldsymbol{x}}$ into the graph of g
a) $g(x)=2^{x-1}$
b) $g(x)=2^{-x}$
c) $g(x)=3 \cdot 2^{x}$
d) $g(x)=2^{3-x}$

Describe how to transform the graph of $\mathbf{f}(\mathbf{x})=\mathbf{e}^{\mathbf{x}}$ into the graph of g
a) $g(x)=e^{4 x}$
b) $g(x)=e^{-4 x}$
c) $g(x)=3 \cdot e^{x}+1$
d) $g(x)=e^{2-2 x}$

$\mathbf{5 | P a g e}$

6|Page

	Sketch a graph of the following functions $y=\frac{4}{1+2 e^{-x}}$ 1) Determine the minimum and Maximum capacity (Horizontal Asy) 2) Determine the y-intercept 3) Determine the domain and range 4) Intervals of Increase or Decrease 5) Determine the end behavior 6) Find any asymptotes 7) Determine Half the max capacity 8) Intervals of Concavity	$y=\frac{4}{1+2 e^{x}}$ 1) Determine the minimum and Maximum capacity (Horizontal Asy) 2) Determine the y-intercept 3) Determine the domain and range 4) Intervals of Increase or Decrease 5) Determine the end behavior 6) Find any asymptotes 7) Determine Half the max capacity 8) Intervals of Concavity

7|Page

	Based on recent Census Data, a logistic model for the population of Dallas, TX, tyears after 1900, is as follows: $y=\frac{1301642}{1+21.602 e^{-0.05054 \tau}}$ a) What was the population of Dallas, TX in the year 2000?
b) According to the model, what is Dallas' maximum sustainable	
population?	
c) According to this model, when was the population 1 million.	

	Bacteria Growth The number of bacteria after t hours is given by $y=150 e^{0.521 t}$
a) What was the initial amount of bacteria present?	
b) How many bacteria are present after 4 hours?	
c) How many hours will it take until there are 400 bacteria?	

10|Page

Chapter 3: Exponential, Logistic, and Logarithmic Functions
3.2: Exponential and Logistic Modeling

$11 \mid \mathrm{Page}$

$\mathbf{1 2 | P a g e}$

| B) Initial Population =20, Max Capacity (Limit to growth) $=100$ |
| :--- | :--- |
| Passing through (4, 75) |\quad| 32. Exponential Growth: The population of River City in the year 1910 |
| :--- |
| was 4200. Assume the population increased at a rate of 2.25\% per year. |
| a) Estimate the population in 1930. |
| b) Predict when the population reached 20,000. |
| B) Find the time when there will be 1 gram of the substance remaining. |
| Example 4: Suppose the half-life of a certain radioactive substance is 20 |
| days and there are 5 grams present initially. |
| A) Express the amount of the substance remaining as a function of time. |
| Ber |

$13 \mid \mathrm{Page}$

Watauga High School has 1200 students. Bob, Carol, Ted and Alice start a rumor, which spreads logistically so that
$S(t)=\frac{1200}{1+39 e^{-0.9 t}}$ models the number of students who have heard the rumor by the end of day t.
A) How many students have heard the rumor y the end of Day 0 .
B) How long does it take for 1000 students to hear the rumor?

Use the data in the table and exponential regression to predict Dallas, TX population in 2015

1950	434,462
1960	679,684
1970	844,401
1980	904,599
1990	$1,006,877$
2000	$1,1888,589$

$\mathbf{1 4 | P a g e}$

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy Chapter 3: Exponential, Logistic, and Logarithmic Functions 3.3: Logarithmic Functions and their graphs

$\mathbf{1 5 | P a g e}$

$\mathbf{1 6 | P a g e}$

| | Use a calculator to evaluate the logarithmic expression if it is defined and
 check your result by evaluating the corresponding exponential expression
 a) $\log 34.5=$ b) $\log 0.43=$ c) $\log (-3)=$ |
| :--- | :--- | :--- |
| d) $\ln 23.5=$ e) $\ln 0.48=$ f) $\ln (-5)=$ | |
| Solve the equation
 a) $\log x=3$ b) $\log _{2} x=5$ | |
| | |

$\mathbf{1 8 | P a g e}$

19|Page

Chapter 3: Exponential, Logistic, and Logarithmic Functions
3.4: Properties of Logarithmic Functions

$\mathbf{2 0 | P a g e}$

Let b, R, and S are positive real numbers with $\mathrm{b} \neq 1$, and c any real number - $\log _{b}(R S)=\log _{b} R+\log _{b} S$ - $\log _{b}\left(\frac{R}{S}\right)=\log _{b} R-\log _{b} S$ - $\log _{b} R^{c}=c \log _{b} R$	15. $\ln \left(x^{2}\right)=\ln x \cdot \ln x$ 16. $\log \|4 x\|=\log 4+\log \|x\|$ Prove the Product Rule for Logarithms: $\log _{b}(R S)=\log _{b} R+\log _{b} S$ Let $x=\log _{b} R$ and $y=\log _{b} S$ Assuming x and y are positive, use properties of logarithms to write the expression as a sum or difference of logarithms or multiples of logarithms A) $\log (8 x)$ B) $\ln \left(\frac{5}{x}\right)$ C) $\log _{2}\left(x^{5}\right)$ D) $\log \left(8 x^{2} y^{4}\right)$ E) $\ln \left(\frac{\sqrt{x^{2}+5}}{\sqrt[3]{x^{4}}}\right)$

$21 \mid \mathrm{Page}$

Let b, R, and S are positive real numbers with $\mathrm{b} \neq 1$, and c any real number $\bullet \log _{b}(R S)=\log _{b} R+\log _{b} S$	Assuming x, y and z are positive, use properties of logarithms to write the expression as a single logarithm				
$\bullet \log _{b}\left(\frac{R}{S}\right)=\log _{b} R-\log _{b} S$					
$\bullet \log _{b} R^{c}=c \log _{b} R$		\quad			
:---	:---	:---			
	C) $\frac{1}{4} \log x+\log 6$	ln x			

E) $5 \log \left(x^{2} y\right)+3 \log \left(y^{2} z\right)$
F) $\ln x^{5}-2 \ln (x y)$

$\log _{64} 4096=\frac{\log _{8} 4096}{\log _{8} 64}=\frac{4}{2}$ because $\begin{aligned} & 8^{y}=4096 \rightarrow 8^{y}=8^{4} \quad y=4 \\ & 8^{y}=64 \rightarrow 8^{y}=8^{2} \quad y=2 \end{aligned}$	Rewrite the following as an exponential function then solve for y A) $\mathrm{y}=\log _{4} 7$
$\log _{64} 4096=\frac{\log _{4} 4096}{\log _{4} 64}=\frac{6}{3}$ because $\begin{aligned} & 4^{y}=4096 \rightarrow 8^{y}=4^{6} \quad y=6 \\ & 4^{y}=64 \rightarrow 4^{y}=4^{3} \quad y=3 \end{aligned}$	Use the change of base formula and your calculator to evaluate the logarithm A) $\log _{3} 16$ B) $\log _{1 / 2} 2$
For positive real numbers a, b and x with $\mathrm{a} \neq 1$ and $\mathrm{b} \neq 1$ $\log _{b} x=\frac{\log _{a} x}{\log _{a} x}=\frac{\ln x}{\ln x}$	Express using only natural logarithms A) $g(\mathrm{x})=\log _{5} x$ B) $g(\mathrm{x})=\log _{2}(x+y)$

$23 \mid$ Page

	Describe the transformation of each function from the original function $\ln (\mathrm{x})$ or $\log (\mathrm{x})$ $42) \mathrm{f}(\mathrm{x})=\ln (\mathrm{x})+2$
46) $\mathrm{f}(\mathrm{x})=\ln (5-\mathrm{x})$ 44) $\mathrm{f}(\mathrm{x})=\ln (-\mathrm{x})+2$	
A $(\mathrm{x})=\ln (\mathrm{x}-5)$	
52) $\mathrm{f}(\mathrm{x})=-3 \log (1-\mathrm{x})+1$ B) $\mathrm{y}=\frac{1}{3} \log x$	
C) $\mathrm{y}=\log (2 \mathrm{x})$ D) $y=\log \left(\frac{1}{2} x\right)$	

24 |Page

$\mathbf{2 5 | P a g e}$

26|Page

Chapter 3: Exponential, Logistic, and Logarithmic Functions 3.5: Equation Solving and Modeling

27|Page

$\mathbf{2 8 | P a g e}$

29|Page

$30 \mid P$ age

[^0]: $1 \mid \mathrm{Page}$

